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Abstract—A general method is developed to determine the stress-intensity factor for a penny-shaped crack
embedded in an elastic circular cylinder and deformed by non-axisymmetric normal stresses. The surface of
the cylinder is assumed to be stress free. Numerical values of the stress-intensity factor are presented for a
cylinder subjected to transverse bending.

INTRODUCTION

The problem of a concentric penny-shaped crack embedded in an infinite circular cylinder and
subjected to axisymmetric normal loading has been considered by Collins[1], Sneddon and
Tait[2] and Sneddon and Welch[3]. When the crack surfaces are subjected to in-plane shear
and torsional stresses the formulas for the stress-intensity factors are given in the work of
Kassir and Sih[4]. In addition, the last reference contains results applicable to other shapes of
finite solids with buried penny-shaped cracks (e.g. thick plates, half-spaces and spheres).

The purpose of this investigation is to present a general procedure for solving a class of
problems involving a penny-shaped crack embedded in a long circular cylinder and opened by
nonaxisymmetric pressure distribution. The crack is assumed to be concentrically located in a
mid-plane normal to the axis of the cylinder, and the material of the cylinder is idealized to be
homogeneous, isotropic and linearly elastic. It is also assumed that the surface of the cylinder is
free from stress (Other conditions can be dealt with in analogous manner).

Since the geometry of the cylinder is symmetric about the crack plane, it suffices to
formulate the problem for a semi-infinite cylindrical region. At any point in this region, the
displacement field consists of two parts: One part is associated with an unbounded solid
containing a penny-shaped crack and the other part is associated with an uncracked cylinder.
An integral transform solution appropriate to the first part has been developed by Smith et
al.[5] (see also Keer[6]). In this investigation, a displacement solution of the non-axisymmetric
field equations of elasticity is utilized to develop an integral transform solution appropriate to
the cylindrical region. The two solutions are employed to reduce the problem to integral
equations of Fredholm type. For the illustrative example of a cylinder subjected to transverse
bending, the integral equations are solved numerically and the stress-intensity factors are
computed for several values of the crack radius.

FORMULATION OF PROBLEM AND SOLUTION

Consider a penny-shaped crack of radius a embedded in a long circular cylinder of radius
b(b > a). It is assumed that the center of the crack is located on the axis of the cylinder and its
plane is normal to that axis. Figure 1 shows the geometry of the problem where the position of
a point is defined by cylindrical coordinates (r, 8, z). In this coordinate system, the crack
occupies the region z =07, 0< 0 <27, 0<r < q, the displacement components are denoted by
U, Ug U, and @, 0p O, T4 Tr. and 7, designate the corresponding stress components. The
state of stress set up in the neighborhood of the crack is induced by identical distribution of
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Fig. 1. An embedded crack in a circular cylinder.

normal pressure, o,(r,8,0) = - p(r,8), applied to the two surfaces of the crack while the surface
of the cylinder is assumed to be stress free.

Referring to the semi-infinite region z = 0,0 < r < b,0 < 0 < 2, the boundary conditions can be
expressed in the form

T.=16=0, z=0, 0<@<2m O0<r<bh, (1

o, =—p(ré)=- 20 H,(r)cos(n8), z=0,

0<6<2m, 0sr<a, (2)
u, =0, z=0, 0=6=<2q7, asrs<p, 3)
G, =T =T7,=0, 0=<z<om, r=a, 0<0<2m, )]

where all stresses tend to zero as z - and the Fourier coefficients, H,(r), in eqn (2) are given
by

Ho(f)=$f0"p(r, ) de
H(r>=3[" (r,6) cos (n8) d6, n =1 5)
' 7Top , @) cos (n L, on=12,... . (

The displacement field in an infinite solid with a penny-shaped crack subjected to normal
load of the type in eqn (2) is given by [5, 6]

_ g, dg
2uu,=(1-2v) ar”araz’ (6a)
ptg = (1= V)r39+r{903z’
i, = 21— ) By 08 (6¢)
Bl 3z 97
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in which g(r, 6, z) is a harmonic function given by

g= i cos (né) fmA"—(s)],,(rs)e‘” ds. @)
n=0 o S

In eqns (6) and (7), p stands for the shear modulus of the material, J, is the usual Bessel
function of order n and A,(s) is an unknown function to be determined from boundary
conditions (2) and (3). The corresponding solution to the problem of a finite radius cylinder
without a crack can be accomplished by first expressing the displacement solution of the field
equations of elasticity in the following form (see, e.g. Green and Zerna[7])

2 1, = 4(1 - ) (f, cos 8 + f sin 0)—56;(rcos 8f,

+rsin0f2)+3—fr3+%3—j;', (8a)
2uug=41-v)(—f sin @+ f,cos 6)

—;—o(f.cosﬂ+f2sin0)+%3—§—2?;~r‘. (8b)

2u U, = —i(rfl cos @ + rf, sin 0)+8—f9, (8c)
0z 9z

Here, f.(r, 9, z), n = 1,2,3,4, are space harmonic functions. Since the normal stress described in
boundary condition (2) has an even distribution in the variable 8, it follows from eqns (8) that f,
and f; must also be even in 6 while f, and f, are odd in the same variable. Moreover, as
indicated in boundary condition (1), the shearing stresses vanish at all points of the z = 0 plane.
In view of these observations and the harmonic character of the functions involved, the integral
expressions of the displacement potentials in eqns (8) appropriate to the class of problems
posed by boundary conditions (1)~(4) are found to be as follows

[1]=2 [t g ], B sy cos sapas, %)
f3= 20 cos (nl))J:m C.(s) I(rs) cos (sz) ds, . (9b)
fa= i} sin (n6) f: D,(s) L(rs) cos (sz) ds, (9¢)

where I,(rs) is modified Bessel function of the first kind and order n. It is clear from the form
of eqns (8) and (9) that B,(s), C,(s) and D,(s) are integral transforms appropriate to the
cylindrical region under general loading conditions. They are determined from the conditions
imposed on the surface of the cylinder.

The total displacement field is obtained by adding eqns (6) and (8) and using the results given
in eqns (7) and (9)

duu, = 20 cos (1) J:c {(1 — 2 — 52) Anls) Ji(rs) e

+ ([(4— 4y + 1) Ly (rs) = rs L (rs)] Bu(s)

+sL(rs) C,(S) + 2_rn I,,(rs)D,,(rs)) cos (sz)} ds. (102)
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2u g = HZ:! sin(ne)fo {—-:!(1 —2v- sz)"‘Ls(“f-)l,,(rs)e”z

+ [(4—4v+ n)I,,H(rs)B,‘(s)~$1,,(rs)C,,(s)

~2sL.(rs) D, (s )] cos (sz)} ds, (10b)

2uu, = i cos (n())fo {(2— 2v+s2) An(s) Ju(rs) e
n=0 (i}
+ [l 41(rs) B,(s) — L,(rs) Ca(s)] s sin (sz)} ds, (10c)

where the prime denotes differentiation with respect to the argument i.e. s J,(rs) = (8/ar) J,(rs).
In the same manner, the stresses at an arbitrary point in the cylinder are found

o, = i cos (nf) fw {[(1 =2v —82) Ja(rs) = 2v Jo(rs)] sA,(s) e
n=0 0
; <[2VI,,(rs) +2(1 = 20) [ i(rs) = srTiay(rS)] sB.(s)
bl 2n ,
+ 51, (rs)Co(8) + = [srl,(rs)— L,(rs)] D,,(s)> cos (sz)} ds, (11a)

o, = nZ:ﬂ cos (nh) f:{— (1+52) Ap(s) J(rs)e™

+{[2v L, (rs) + rs L. (rs)] Ba(s) = L,(rs) s Ca(s)) cos (s2)} s ds, (11b)

T, = i cos (né) fw {s 2 An(s) Ju(rs)e™™
n=0 0
+ <[rs L(rs) ~ (1 + 2= 20) L1(rs)] Ba(s)

—sl,(rs) C,(s)— ';1 L(rs) D,.(s)> sin (sz)} sds, (11¢c)

Ty, = 5: sin (n6) _Lm { —gZA,,(S) Jo(rs)e
n=1
+ [(41/ —3—n)l,..(rs) B,(s) + -:! L(rs) Cy(s)

+ sI,(rs) D,,(s)] sin (sz)} s ds, (11d)

Trg = 21 @%ﬁo—)": {%(1 -2y —s2) {J,,(rs)—sr],’,(rs)]—’@e"l

+ <[(n +3— s L(rs) — (1 + 1) (1 + 5= 69) Loy (r$)] Buls)
—3[(n = 1) Liy(rs) + (n + 1) L1 1(r8)] s Cu(s)

Dy (s)
r

+{(n~n*-r*s) Lrs)+2 rs L.1(rs)] > cos (sz)} ds. (11e)

The expressions in eqns {11c) and (11d) satisfy the boundary conditions in eqn (1) automatic-
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ally, and eqns (10c) and (11b) when used in conjunction with eqns (2) and (3) yield a pair of dual
integral equations

J:o s Au(s) Jo(rs)ds + f: s{—[2vL,(rs) + rs I ,,,(rs)] B,(s)
+ L(rs) s Co(s)}ds = Hy(r),0s r<q, (12a)
Jm Aus) T, (rs)ds =0, a<rs<b, (12b)
0

whose solution is (Sneddon [8])

An(s) = 5" f Bu(D)Jrist) dt, (13)
0
provided that limit [t"'? ¢,(¢)] = 0. Making use of the result
>0

Irn+l In(ry)dr_<7T 12

n g n+1/2 4
Yy V=P 2y) t Liap(yt), (14)

the functions ¢,(¢), n =0,1,2, ..., are found to be governed by

al)+1 [ (@R + 1= 20) Ly 1p(5) = ¥t Ly ya(y)] Baly)

2 1/2 .
+ ¥hyn(yt) Co(y)) y P dy = (;) g

Lt ] (r) dr

— 55— 0<t<a. 15

o V-7 ‘ 19

The next step in the analysis is to reduce eqn (15) into a standard integral equation. For this

purpose and with a view toward satisfying the boundary requirements on the surface of the
cylinder, it is found convenient to make use of the transformations

B.(y) == f u(5)ba(s. ¥) ds. (162)
y-l/Z a

G =" [ erts. ) ds. (16b)
12 a

Dn(y)=by fdu(s)dn(s,y)d& (16¢)
m 0

With the aid of relations (16a) and (16b), eqn (15) is reduced to the Fredholm integral equations

$ult) + foam(s) La(s, ) ds = <2>”2 JY:

T

'r"HH,, r dr
J‘T(zl)h_ n=0,12,... (17
o ("=r)

in which the kernels, L,, are of the form

Ln=1 f £5(@n + 1= 20) Tyarlts) = 15 Tnoylts)]

ba(s, M)+ Iuiipo(ts) ca(s, A)) ds. (18)
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In eqn (18), the functions b, (s, A) and c,(s, A) are determined from the boundary conditions in eqn
4).

Upon inserting the appropriate expressions of the stress components from eqns (11) into eqn
(4), applying the inverse Fourier sine and cosine transforms in the variable z, making use of the
relations in eqns (13) and (16) and evaluating the resulting Hankel integrals (Erdelyi [9]), the
remaining unknown functions b, and ¢, are determined as

ay(s,A)

by(s, A} = AGs) (19a)
_Bals,A)
C,,(s,A)-————A"(s) , (19b)

where the expressions for a,, 8, and A, are given in the Appendix. When the functions b, and
¢, are inserted in the integral in eqn (18), the kernel L, is readily shown to be bounded at both
upper and lower limits, and the Fredholm equation may be solved for ¢,(¢) either by iteration
(for small values of the ratio a/b) or by numerical schemes (Kantorovich and Krylov[10]).

STRESS-INTENSITY FACTOR
In the vicinity of the crack border, the stress component o.(r, 8, 0) may be written as

ky
V(2r)

o:(r, 0,0)= +0(r) (20)

where k(0) is the stress-intensity factor and r, = r-a, r,—> 0. It follows from eqns (11a) and (13)
that k, is given by
1/2 =
k=TS 4.a) cos (nh), 1)
n=0

a

For large values of b, the kernel L,(s, t) in eqn (18) vanishes and ¢,(t) can be evaluated
directly from eqn (17). By letting ¢t > a and inserting the result in eqn (21) the expression for k,
which applies to a penny-shaped crack embedded in an infinite solid and subjected to general
normal loading conditions is recovered[5].

Similarly, the crack-opening displacement is obtained from eqns (10¢) and (13). The result is

u,(r, 0,0)= (2)”2 (1;,,);“”: r" cos (n())fra

T =0

" (1) dt

V=) Osrs<a. (22)

TRANVERSE BENDING OF CYLINDER

The formulation will be illustrated by considering the problem of a penny-shaped crack in a
cylindrical beam subjected to transverse bending. In this case, p(r, ) consists of

p(r,0) :Po"'!)lErCOS 6, (23)

where p, and p, are constants. It follows from eqn (5) that

Ho(r)=po,  Hy(r)=(pila)r. (24)

The functions ¢o(¢) and ¢;(¢) are governed by the integral equations

a 12
olt) + f dols) Lols. 1) ds = (3) po £, (252)

T
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S+ fo " 61(5) Li(s, ) ds =§ (%) Py s (25b)

a
in which
Lo\, 1) = ;‘m f (215)"[(1 - 2v) sinh (t5) — 15 cosh (£5)]
0

X bo(s, A )+ sinh (t5) ¢ofs, A)) ds, (26a)

® i
LA 1) =;§ﬁ f (%)1 (I3 - 2w — t5)ts cosh (5) ~ (3 — 2v) sinh (¢5)]
[t}
X by(s, A) + [ts cosh (t5) - sinh (ts)]c\{s, A)) ds, (26b)

and bi(s, A) and ¢;(s, A), j = 0,1, are obtained from the appendix.
The stress-intensity factor is expressed in the form

2 ale
k)

ky = [Polllo +':?%171 ¥ cos 0], 27

where the numerical values of i, and ¢, are obtained from eqns (25) after use is made of the
substitutions

do(a) = 2Im)'" poa® ¢y
(28)

b(@) =5 p a"y,

Equation (25b) was solved numerically for several values of the ratio a/b, and the values of ¢,
together with the corresponding values of ¢ given in Ref. [3], are shown in Table 1 for a
material with Poisson’s ratio v = 3. It should also be mentioned that in order to prevent contact
between crack surfaces in the compression region of the cylinder ([#/2]< 8 <[3#/2]), the
quantities p, and p, must be chosen so that poe = (2/3) p:, for all values of a/b.

Table 1. Numerical values
of ¢ and ¢, in eqn (27)

(alb) o ¥

0.2 1005 1.0003
03 1013 1.0017

0.4 - 1.00%
0.5 1072 1.0224
0.6 1.0431

0.7 1259 11382
0.8 1479 12120
09 2002 18721

REFERENCES

1. W.D. Collins, Some axially symmetric stress distribution in elastic solids containing penny-shaped cracks—III, A Crack in
a circular beam. Proc. Edinburgh Mathematical Soc. Series 2, Vol. 13, pp. 69-78 (1962).

2. 1. N.Sneddon, and R. J. Tait, The effect of a penny-shaped crack on the distribution of stress in a long circular cylinder, Int.
J. Engng Sci. 1, 391-409 (1963).

3. L N. Sneddon and J. T. Welch, A note on the distribution of stress in a cylinder containing a penny-shaped crack. Int. J.

Engng Sci. 1, 411-419 (1963),

. M. K. Kassir and G. C. Sih, Three Dimensional Crack Problems. Noordhoff, Leyden (1975).

. F. W. Smith et al., Stress-intensity factors for penny-shaped cracks, Part I—infinite solid, J. Appl. Mech. 34,947-952 (1967).

. L. M. Keer, A Class of nonsymmetrical punch and crack problems. Quart. J. Mech. Appl. Math. 27, 423-436 (1963).

. A. E. Green and W. Zerna, Theoretical Elasticity, Oxford University Press (1954).

. L N. Sneddon, Mixed Boundary Value Problems In Potential Theory. North-Holland, Amsterdam (1966).

. A. Erdlyi (Editor), Tables of Integral Transforms, Vol. 2. McGraw-Hill, New York (1954).

. L. V. Kantorovich and V. L. Krylov. Approximate Methods of Higher Analysis. Interscience, New York (1964),

Lo iR SRR R R -

-



160 M. K. KAssir and M. SINGH
APPENDIX
Expressions for the functions a,, 8, and 4, (n=1.2....) in eqns (19) are obtained by expanding the determinants:
A =ICl ij=123
a, =Ry, C, Cj
21 CZZ CZ'{
31 Cll C}]
Bn Cll RII Cl]
CZI 21 CB
C3l R3| C]?

where
Cy=xl(x)~(n+2~-2v)1,,,(x)
Cop= =3y (1) + 1,y (0))
Cy=—-nl(x)
Co=(n+3-4nxl(x)-(n+ 1) (n+5-60) 1,,,(x)
Cp==3ln =1 Ly} + (4 1) Ly ()]
Cyy= (= 1% = xH(x)+2xI,, (x)
Cay =G =20)xl, ()~ {(n + {(n +4—4p)+ 21, (x)
Cyp=(*+n*~n) (}) L(x)=1,.,(x)
Cyy=20{xl,, \(x)+(n - 1) 1,(x)]
Ry =~ 22K, () + K, () + (1= 2m)K, ()] Ly o0 LK 1 0+ K O] 9 Lol y)

R, =27"{((2V— 0= K, ()4 [0+ 1) Q- 2n— 1))
x KO L)+ TeK 0+ (n + DK 00y 1)}

Ry = 2vl(n+ DK, (x) - (n - DK, _,(x)] - 2nxK,, (x)
+(n=1=x)K, ()= [(n+ 1) 2n+ 1)+ X7 Ky (O Lysaaly)
+{2x Kn(x) +(n + DK, () —(n = DK, (D) y L o).

In these equations, K,,(x) stands for the modified Bessel function of the second kind of order n, x = bs and y = ts.
While the corresponding expressions for case n = 0 reduce to

Agx)= x> B(x) = (2= 2v + X)) I(x)
agx. ¥) =2 (91 = X Io(x)Kolx)
== 20+ ) LK ()] 429 1 a(y)
Bolx. V=21 5(y) {u = 4= x2+ (3 20) [x2](x) Kyx)
+Q2- 20+ ) L) Ky 4 2y 1y a(0)

* 1= 24 2p+ x Iy(x) Ko(x) + 2= 20 + x2) L(x)K,(x)).



